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Abstract Men and women differ statistically in the rel-

ative lengths of their index and ring fingers; and the ratio of

these lengths has been used as a biomarker for prenatal

testosterone. The ratio has been correlated with a wide

range of traits and conditions including prostate cancer,

obesity, autism, ADHD, and sexual orientation. In a gen-

ome-wide association study of 979 healthy adults, we find

that digit ratio is strongly associated with variation

upstream of SMOC1 (rs4902759: P = 1.41 9 10-8) and a

meta-analysis of this and an independent study shows a

probability of P = 1.5 9 10-11. The protein encoded by

SMOC1 has recently been shown to play a critical role in

limb development; its expression in prostate tissue is

dependent on sex hormones, and it has been implicated in

the sexually dimorphic development of the gonads. We put

forward the hypothesis that SMOC1 provides a link

between prenatal hormone exposure and digit ratio.

Introduction

The ratio of the lengths of the second and fourth digits

(2D:4D) is sexually dimorphic (Ecker 1875): statistically

women tend to have a larger ratio than men but the dis-

tributions overlap and there is a large variation within each

sex. It has been suggested that 2D:4D may be a biomarker

for prenatal exposure to androgen (Manning et al. 1998;

Wilson 1983): sex steroids, produced by the developing

gonads, were proposed to modulate digit growth early in

development and hence determine digit ratio in adults.

Digit ratio would thus be an attractive measure because

androgens have organising effects on the developing brain

(MacLusky and Naftolin 1981) and digit ratio could serve

as a retrospective, non-invasive measure of this early

exposure to androgen.

Digit ratio in humans is established during the first tri-

mester of development (Malas et al. 2006), coinciding with

a period of high testosterone production in males (Abra-

movich 1974). Furthermore, it appears to remain stable

across the lifespan (McIntyre et al. 2005). Until recently,

evidence for Manning’s biomarker hypothesis had come

entirely from correlational studies (McIntyre 2006). For

instance, males and females with congenital adrenal

hyperplasia, a condition resulting in elevated androgen

production, have been found to have lower, more mascu-

linised, digit ratios (Brown et al. 2002; Okten et al. 2002).

Also, men with complete androgen insensitivity syndrome,

due to non-functional androgen receptors, show feminized

digit ratios (Berenbaum et al. 2009). Furthermore, a sig-

nificant relationship has been shown between digit ratio at

age 2 and the ratio of testosterone to oestrogen, measured

in amniotic fluid (Lutchmaya et al. 2004). However, the

most convincing evidence comes from experimental ani-

mal studies, which now confirm that prenatal hormones
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control 2D:4D development (Talarovicová et al. 2009;

Zheng and Cohn 2011). Zheng and Cohn (2011) showed

that digit ratio in mice is determined by the ratio of tes-

tosterone to oestrogen acting on the fourth digit in a narrow

window early in development.

In the years since the biomarker hypothesis was pro-

posed, over 400 published studies have used digit ratio to

investigate the effect of prenatal sex hormones on human

traits. Digit ratio has been reported to correlate with an

impressive range of traits and conditions that seem to have

in common a dependence on sex hormones. These include

diseases such as prostate cancer (Jung et al. 2010; Rahman

et al. 2011), breast cancer (Manning and Leinster 2001),

osteoarthritis (Zhang et al. 2008) and obesity (Fink et al.

2006); psychological disorders such as autism (Hönekopp

2012), ADHD (Martel et al. 2008; Stevenson et al. 2007),

eating disorders (Klump et al. 2006) and alcohol depen-

dency (Kornhuber et al. 2011); features such as sperm

count (Bang et al. 2005), age of menarche (Manning and

Fink 2011), penis size (Choi et al. 2011) and facial shape

(Fink et al. 2005); and behavioural traits such as aggression

(Hönekopp 2011), visuo-spatial ability (Peters et al. 2007),

handedness (Fink et al. 2004), sporting ability (Hönekopp

and Schuster 2010), successful financial risk-taking

(Coates et al. 2009) and sexual orientation (Grimbos et al.

2010). Analogous polymorphisms have been found in other

species (Burley and Foster 2004; Forstmeier et al. 2010).

Cross-species variation in digit ratio has even been used to

predict social behaviour from hominoid fossils (Nelson

et al. 2011).

What is not known is the mechanism by which sex

hormones have their effect on digit ratio. Manning made

the early suggestion that androgen may affect digit ratio via

regulation of the HOX genes (Manning et al. 1998).

Although the posterior HOX genes are known to be

important in the formation of the digits (Kondo et al. 1997),

little evidence has emerged to link them to variation in

digit ratio and it is not known how their regulation or

expression levels might affect digit ratio. Our present

results lead us to an alternative hypothesis.

Digit ratio is known to be highly heritable: twin studies

give an estimate of about 60 % (Medland and Loehlin

2008). To date, there has been one genome-wide associa-

tion study (GWAS) that investigated digit ratio (Medland

et al. 2010). The authors listed a suggestive association

with a variant within the gene SMOC1 (MIM 608488,

rs11158820: P = 1.3 9 10-6), but they made no comment

on this particular finding. Here, in a GWAS using a

genotyping array of higher density, we find a much stron-

ger association with SMOC1. In our discussion, we

assemble the evidence that this gene mediates between

prenatal hormone exposure and digit ratio. We draw on

recently accumulated evidence that SMOC1 has a critical

role in limb development and that its expression is

dependent on sex hormones.

Subjects and methods

Participants

Digit ratio was measured as part of the PERGENIC project,

which tested 1,060 individuals on a 2.5-h battery of opto-

metric, perceptual and oculomotor tests (Goodbourn et al.

2012). It included several biometric measurements. Partic-

ipants were recruited from the Cambridge area by adver-

tisements within the university and online. Participants were

all of European descent, as established by the nationality

of their four grandparents. Further checks on ancestry

were made using their genotypes. They were aged from 16

to 40 years (M = 22 years, SD = 4 years). The study

received approval from the Cambridge Psychology

Research Ethics Committee. All participants gave written

consent after having been given information about the study.

Digit ratio

A flatbed scanner (Cannon 8800F) was used to take an

image of the left hand of each participant. The left hand

was chosen as it is reported to have the larger genetic

component (Medland and Loehlin 2008). Lengths of the

second and fourth digits were derived by a computer-

assisted measurement program, as this is the most reliable

method (Allaway et al. 2009). Lengths were defined from

the most proximal metacarpophalangeal flexion crease to

the fingertip. The flexion crease develops around the ninth

week of gestation and is a deep and permanent crease that

forms over joints (Kimura et al. 1990). The length of the

second digit was divided by the length of the fourth digit to

give the 2D:4D ratio. For each image, the computer

required the manual input of four points: the creases and

the fingertips of the index and ring fingers. The program

automated the zoom level to allow visualisation of the

image features and automatically calculated the finger

lengths and digit ratios from the input points. A second

independent image was available for each of 103 randomly

chosen individuals (66 females) who returned for a second

visit a minimum of 1 week later; data from these partici-

pants were used to estimate reliability.

Genotyping

DNA from 1,008 individuals was collected from saliva

samples taken during the participants’ visit using Oragene

OG-500 kits (DNA Genotek Inc., Ottawa, Canada). DNA

extraction and microarray processing were performed by
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Cambridge Genomic Services (University of Cambridge,

UK) using standard manufacturers’ protocols. Individuals

were genotyped at 733,202 single nucleotide polymor-

phisms (SNPs) on the Illumina HumanOmniExpress

BeadChip. Genotype calling was by custom clustering.

Thirty individuals were excluded from the analysis, on the

basis of genetic and phenotypic quality control. Criteria for

exclusion were: inadequate image quality (10 individuals),

genotypic sex anomalies (3 individuals), low (\0.97)

genotyping call rate (1 individual), population outliers

(1 individual) and duplicate or related samples (15 indi-

viduals removed in total). These were defined by inspecting

the histogram of all identity-by-descent (IBD) estimates. It

showed 4 pairs with an IBD close to 1 (duplicate samples

or MZ twins), a cluster of 12 pairs with an IBD close to 0.5

(sibling or parent-offspring pairs) and 1 pair with an IBD

close to 0.25 (half-sibling, avuncular, or grandparent-

grandchild). Inspecting our participant registration dat-

abases, palm scans and iris photographs allowed us to

conclude the identical pairs were duplicate samples, indi-

viduals who presented for testing on two separate occa-

sions. The other related individuals were siblings. In each

case, we excluded the sample with the lower call rate. This

left 979 individuals in the analysis (599 females). Quality

control was also conducted on individual SNPs. Markers

with [2 % missing genotypes (12,706 SNPs) and markers

with \1 % minor allele frequency (77,738 SNPs) were

excluded, leaving 642,758 SNPs in the analysis.

Statistical analysis

Association analysis was conducted assuming an additive

genetic effect using PLINK (Purcell et al. 2007). To control

for any residual population stratification resulting from

multiple genetic subgroups or genetic admixture in our

population, we used Eigensoft (Price et al. 2006) to extract

the top three principal components (PCA) of variation in the

sample. The three PCA axes were entered together with

phenotypic sex as covariates in the regression model. The

phenotype was normally distributed (Online Resource

Fig. 1). At any suggestive (P \ 1 9 10-5) loci, 2.5 Mb

regions centred on these locations were defined for impu-

tation. These regions were imputed using IMPUTE2

(Howie et al. 2009, 2011) with the phased haplotypes of the

1000 genomes project (1000 Genomes Project Consortium

2010). Association analysis of these high-density regions

was then carried out on the genotype probabilities using the

dosage association feature of PLINK. The four covariates

were added to the regression model as before. Finally,

regions corresponding to the association signal were

defined. These regions are blocks that are in linkage dis-

equilibrium with the most strongly associated marker and

contain other ‘‘clumped’’ SNPs that are associated with the

phenotype with a specified P value. The range, therefore,

defines the region likely to contain the gene of interest,

where the causal polymorphism associated with the phe-

notype lies. We used PLINK’s clumping function to define

the regions, using a significance threshold of index SNPs of

0.00001, a significance threshold for clumped SNPs of 0.01,

an LD threshold for clumping of 0.1 and a physical distance

threshold for clumping of 1,250 Kb. For all significant or

suggestive SNPs, cluster plots were inspected manually and

genotype distributions were evaluated for deviation from

Hardy–Weinberg equilibrium. All genomic references are

based on NCBI Build 37. Analyses were performed using

Matlab (2011b) and PLINK (v1.07) software.

Results

The measurements of digit ratio were highly reliable, as

established by the correlation between measurements taken

on the first and second visits from a randomly chosen sub-

sample of 103 participants who participated twice (2D:

Pearson’s r = 0.98, 4D: r = 0.99, 2D:4D: r = 0.92). We

confirm the classical finding that 2D:4D is higher in females

(M = 0.979 SD = 0.030) than in males (M = 0.964,

SD = 0.031); this difference was highly significant

[t(977) = -7.3, P = 6.48 9 10-13].

Inspection of the QQ plot resulting from the association

(Online Resource Fig. 2) and the value of the genomic

inflation factor (k = 1.00) showed no evidence of increased

signals due to technical error or to population stratification.

Table 1 details the genotyped and imputed SNPs within one

region of chromosome 14 with P \ 5 9 10-7. The stron-

gest signal was at rs4902759 (P = 1.41 9 10-8). Each

additional copy of the C allele was associated with a 0.0076

decrease in 2D:4D. The power to detect this effect was

78 % (Online Resource Fig. 3).

The region giving rise to the association signal included

the gene SMOC1 (Fig. 1; Online Resource Fig. 4).

Although there were associations within the coding region,

the strongest signal originated from a region upstream of

the gene, and so may reflect variation in a regulatory ele-

ment. Post-association quality control showed no evidence

of departure from Hardy–Weinberg equilibrium (Table 1)

and inspection of the signal intensity plots showed that the

SNPs were well called (Online Resource Fig. 5). Two

additional regions were suggestive of association (Online

Resource Table 1).

We examined the association of digit ratio with

LIN28B, identified by Medland et al. (2010). Our strongest

association within the gene was with the same SNP

(rs314277) and the direction of the effect was the same as

reported in the previous study (our study b = 0.0034,

SD = 0.002) but the association was not significant
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(P = 0.084). However, given our smaller sample size

compared with the previous study, the power to detect the

effect was only 3 %. We also tested digit ratio for associ-

ation with several other candidate genes. None of these

associations reached significance at a genome-wide level

(Online Resource Table 2).

We performed a meta-analysis of the SMOC1 region

using the results from the Medland et al. study and our

own. They list results for rs11158820 and rs11621436

where they report association signals of P = 1.3 9 10-6

and P = 3.3 9 10-6, respectively. Our association at these

loci was P = 1.7 9 10-6 and P = 7.7 9 10-6. An inverse

variance meta-analysis of the two studies produced asso-

ciations of P = 1.5 9 10-11 and P = 2.7 9 10-10.

Discussion

The gene SMOC1 encodes the protein SMOC1 (secreted

modular calcium-binding protein 1) (Vannahme et al.

Table 1 Association results for the SNPs with P \ 5 9 10-7

SNP Location LD Allele 1 Allele 2 MAF HWE b SE P value

Genotyped

rs2332175 70345411 0.885 G A 0.461 0.482 -0.0074 0.0013 3.44 9 10-8

rs1952198 70339755 0.901 C T 0.451 0.140 -0.0070 0.0013 1.57 9 10-7

Imputed

rs4902759 70328953 1.00 C T 0.475 0.274 -0.0076 0.0013 1.41 9 10-8

rs11158817 70331469 0.998 T C 0.476 0.303 -0.0076 0.0013 1.50 9 10-8

rs4902758 70328107 0.905 A T 0.447 0.070 -0.0070 0.0013 1.90 9 10-7

rs4902760 70329198 0.905 A C 0.447 0.070 -0.0070 0.0013 1.90 9 10-7

rs9323530 70332304 0.896 T C 0.445 0.060 -0.0070 0.0013 2.08 9 10-7

rs1318485 70333355 0.900 G A 0.447 0.060 -0.0070 0.0013 1.69 9 10-7

rs958056 70333576 0.900 A G 0.447 0.060 -0.0070 0.0013 1.68 9 10-7

rs4899317 70335347 0.903 C T 0.449 0.070 -0.0070 0.0013 1.79 9 10-7

rs4899318 70335429 0.903 T G 0.448 0.070 -0.0070 0.0013 1.84 9 10-7

rs12431570 70336961 0.903 C A 0.449 0.070 -0.0070 0.0013 1.72 9 10-7

rs12435823 70340544 0.904 C T 0.450 0.106 -0.0070 0.0013 1.49 9 10-7

rs4899319 70342363 0.907 C T 0.450 0.119 -0.0070 0.0013 1.55 9 10-7

All SNPs are located on chromosome 14. Locations are GRCh37 coordinates. LD is the r2 linkage disequilibrium between each SNP and

rs4902759. Allele 1 is the minor allele. All imputed SNPs have an IMPUTE2 quality score C1

MAF Minor allele frequency, b change in 2D:4D per additional minor allele, SE standard error of beta, HWE Hardy–Weinberg equilibrium P value
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2002). SMOC1 is secreted into the cellular matrix during

osteoblast differentiation (Bradshaw 2012; Choi et al.

2010) and is an antagonist of bone morphogenetic proteins

(BMPs) (Thomas et al. 2009), which control the formation

of cartilage in the digits (Stricker and Mundlos 2011).

Polymorphisms in or close to the SMOC1 gene have

now emerged as associates of 2D:4D. There are firm

independent grounds suggesting that SMOC1 controls the

development of the digits. Three recent pedigree studies

have shown that mutations of the SMOC1 gene are asso-

ciated with Waardenburg anophthalmia (OMIM 206920) in

humans (Abouzeid et al. 2011; Okada et al. 2011; Rainger

et al. 2011). A common feature of this syndrome is

abnormality of the digits, such as syndactyly, oligodactyly,

or clinodactyly. Furthermore, knockout mice display a

similar phenotype (Okada et al. 2011; Rainger et al. 2011).

In addition, SMOC1 is expressed in mice in forelimb buds

at E9.5, and in developing limbs between E10.5 and E11.5.

Expression coincides with chondrogenic condensation at

E12.5 (Okada et al. 2011; Rainger et al. 2011).

Given the clear role of SMOC1 in limb development and

given that it is associated with variation in digit ratio in the

normal population, what could be the mechanism by which

it controls the phenotype? How should we reconcile our

finding with the prenatal sex hormone theory? Zheng et al.

showed that digit ratio is determined by the ratio of tes-

tosterone to oestrogen acting on the fourth digit, which is

rich in androgen and oestrogen receptors. They found that

activity of these receptors regulated the expression of

skeletogenic genes that control chondrocyte proliferation,

and that this happened differentially in the second and

fourth digits (Zheng and Cohn 2011). The androgen and

oestrogen receptors regulate gene expression by acting as

nuclear receptors: activation by steroids causes the receptor

to enter the nucleus and bind to its target DNA as a tran-

scription factor. Of special interest, therefore, is the finding

that SMOC1 is up-regulated by androgen (Love et al. 2009;

Schaeffer et al. 2008) and down-regulated by oestrogen

(Coleman et al. 2006) in prostate tissue. SMOC1 has also

been shown to have a role in the sexually dimorphic

development of the gonads (Pazin and Albrecht 2009). It is

thus plausible that prenatal testosterone and oestrogen

affect the expression of SMOC1, thus controlling digit ratio.

This would be consistent with our finding that our

largest association with digit ratio arises at a polymorphism

upstream of the gene, near to several dense clusters of

transcription factor (TF) binding sites (Online Resource

Fig. 6). We identified TF binding sites using the ChIP-seq

data from the ENCODE project and the SABiosciences

DECODE database. Notable are three CEBPB-beta binding

sites and two SRY binding sites. CEBP-beta is known to

associate with steroid hormone receptors including the

oestrogen receptor (Boruk 1998; Stein and Yang 1995).

SRY is the sex-determining gene and is known to interact

with the androgen receptor (Yuan et al. 2001). It is also

worth noting that according to the recent GENCODE (v12)

annotations, rs4902759 actually falls within a processed

transcript: a long non-coding RNA. These are thought to

play an important role in gene regulation (Derrien et al.

2012).

It should be noted that we are not here claiming that

polymorphism of SMOC1 itself explains a large proportion

of the variance in digit ratio. Rather we suggest that the

strong association found in the present study identifies the

potential role of SMOC1 as an intermediate between pre-

natal sex hormones and digit ratio, much of the actual

variance in digit ratio may well derive from prenatal sex

hormone levels.

There are ethnic differences in digit ratio: populations of

African origin have lower digit ratios than Caucasians,

whereas Chinese populations have higher ratios than

Caucasians (Manning et al. 2004). It is therefore interesting

that the polymorphism in SMOC1 parallels ethnic differ-

ences in digit ratio. Although the frequency of the C allele

at rs4902759 is 0.46 in the European population of the

1000 Genomes project and 0.48 in our own European

sample, its frequency is 0.85 in African populations and

0.19 in Asians (1000 Genomes Project Consortium 2010).

The difference in digit ratio between Africans and Chinese

is of a similar order to the effect size for the two alleles at

rs4902759. Thus, the ethnic differences in digit ratio could

be derived from the distribution of the SMOC1 polymor-

phism between populations.

In conclusion, we have identified several polymor-

phisms within, and upstream of, the SMOC1 gene that are

associated with digit ratio. The gene is known to play a

critical role in limb development and there is evidence that

it is regulated by sex hormones. Thus, we put forward the

hypothesis that SMOC1 mediates between prenatal hor-

mone exposure and digit ratio.
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