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In man, the spectral shift between the middle-wave (MW) and long-wave (LLW) visual pigments is
largely achieved by amino acid substitution at two codons, both located in exon 5. A third amino acid
site coded by exon 3 is polymorphic between pigments. We have studied the equivalent regions of the
cone opsin genes in two members of the Hominidea (the gorilla, Gorilla gorilla and the chimpanzee,
Pan troglodytes) and in three members of the Cercopithecoidea family of Old World primates (the
diana monkey, Cercopithecus diana, the talapoin monkey, Miopithecus talapoin, and the crab-eating
macaque, Macaca fascicularis). No variation in the codons that specify the amino acids involved in
spectral tuning were found. We predict therefore that the MW and LW pigments of gorilla and
chimpanzee have similar spectral characteristics to those of man. Multiple copies of the same opsin
gene sequence were identified in the chimpanzee, talapoin and macaque and we also show that
non-human Old World primates are similar to man in showing a bunching of polymerphic sites in exon
3. We discuss the ancestry of the separate MW and LW genes of Old World primates and the

equivalent polymorphic gene of the marmoset, a New World primate.

Visual pigments

Molecular evolution Primates Colour vision

INTRODUCTION

Vision depends on a group of light-sensitive pigments in
the retina that are formed by the binding of a retinal, the
aldehyde derivative of vitamin A, to an opsin protein.
Opsins are members of the family of G protein-coupled
receptors that share a common heptahelical structure of
seven «-helical transmembrane regions linked by
straight-chain extra-membrane loops (Schertler, Villa &
Henderson, 1993). Most mammals enjoy a dichromatic
system of colour vision, which depends on comparing
signals of short-wave cones with those of a second class
of cone maximally sensitive in the 500-570 nm range.
Among the mammals, it is only in primates that a
trichromatic system is seen (Bowmaker, 1991). In the
case of man and the Old World or catarrhine monkeys,
trichromacy is achieved by combining the short-wave
cones with middle-wave (MW) cones having peak sensi-
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tivity (dnq,) near 530 nm and long-wave cones having
Amax NEQr 560 nm; the opsin component of the two latter
pigments are coded by adjacent genes on the X chromo-
some (Nathans, Thomas & Hogness, 1986a; Volirath,
Nathans & Davies, 1988; Feil, Aubourg, Heilig &
Mandel, 1990). This contrasts with the situation in New
World or platyrrhine monkeys where there is only a
single gene that codes for pigments with 4, in the
red/green region of the spectrum. In these species,
trichromatic colour vision is found only in females and
arises when different polymorphic forms of this gene are
present on the two X chromosomes; random X-inacti-
vation will then ensure that only a single pigment is
present in each cone photoreceptor (Mollon, Bowmaker
& Jacobs, 1984; Jacobs & Neitz, 1987; Neitz, Neitz &
Jacobs, 1991; Travis, Bowmaker & Mollon, 1988;
Williams, Hunt, Bowmaker & Mollon, 1992; Bowmaker,
Jacobs, Speigelhalter & Mollon, 1985; Bowmaker, Jacobs
& Mollon, 1987; Tovée, Bowmaker & Molion, 1992).

Only a small number of amino acid differences dis-
tinguish the MW and LW pigments of man (Nathans
et al., 1986a) and the same is true for the spectrally-
distinct but allelic forms of the opsin gene in New World
monkeys (Neitz et al., 1991; Williams et al, 1992).
However, certain consistent differences are present and
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it has been possible to determine that the spectral shift
between these pigments is largely achieved by amino acid
substitution at only two sites, both in transmembrane
region 6 (TM6) (Neitz et al., 1991; Williams et al., 1992;
Winderickx, Lindsey, Sanocki, Teller, Motulsky &
Deeb, 1992; Merbs & Nathans, 1993). In order to
establish whether these substitutions are conserved over
other primate species, we have looked at the MW and
LW opsin gene sequences of two additional species of
Great Ape, the gorilla, Gorilla gorilla, and chimpanzee,
Pan troglodytes, and three species of Cercopithecoid
monkeys. Except for the gorilla, all of these species are
predominantly frugivorous in their diet; and it has been
suggested that primate colour vision co-evolved with
yellow and orange fruit, which only trichromatic dis-
persers can readily distinguish at a distance among
dappled foliage (Mollon, 1991). There is therefore a
special interest in the gorilla, a bulk eater, whose diet is
largely composed of stalks, vines, leaves, bark, shoots
and roots. Although the diet of the western gorilla
includes some fruit, the gorilla is a slow-moving forager
who does not seek out fruiting trees at a distance in the
manner of many monkeys. Has the gorilla experienced
a relaxation of the selection pressure for actue colour
vision, analogous to the relaxation of selection pressure
by which Post (1952) explained the high incidence of
colour deficiences in modern human populations?

In their original report of the sequence of the human
MW and LW opsin genes, Nathans er al. (1986a)
reported the presence of multiple copies of the MW gene,
and in a more extensive study (Drummond-Borg, Deeb
& Motulsky, 1989), up to five such copies were identified,
with a modal value of two per X chromosome. Polymor-
phic sites within the human opsin genes have also been
identified (Nathans er al., 1986a; Winderickx, Battisti,
Hibiya, Motulsky & Deeb, 1993), together with hybrid
MW/LW genes that are thought to underlie certain types
of anomalous trichromacy in man (Nathans, Piatanida,
Eddy, Shows & Hogness, 1986b; Neitz et al., 1991;
Deeb, Lindsey, Hibiya, Sanocki, Winderickx, Teller &
Motulsky, 1992). We have previously shown that
multiple opsin genes are also present in the talapoin
monkey, Miopithecus talapoin (Ibbotson, Hunt,
Bowmaker & Mollon, 1992). The sequences of the MW
and LW genes reported in the present paper have
enabled us to show that polymorphic sites are present in
the opsin genes of non-human primates and that
multiple copies of opsin genes are present in the Great
Apes as well as in man.

Separate MW and LW genes are present only in Old
World primates (Bowmaker, Astell, Hunt & Mollon,
1991; Ibbotson et al., 1992), indicating that the dupli-
cation event that gave rise to this system of trichromacy
arose after the separation of the Old and New World
primate lineages. Using a molecular phylogenetic ap-
proach, we have examined the ancestry of these genes in
the six species of Old World primates. The relationship
between the MW and LW genes of Old World monkeys
and the corresponding allelic variants found in New
World primates is also discussed.
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MATERIALS AND METHODS

DNA samples

DNA was prepared from frozen tissue stored from
animals used in an earlier study (Ibbotson et al., 1992)
as follows: a female diana monkey (Cercopithecus di-
ana), a male talapoin monkey (M. talapoin), and a male
macaque (Macaca fascicularis). The DNA samples from
a female gorilla, G. gorilla, and a male chimpanzee, P.
troglodytes, were isolated from blood samples and were
a kind gift of Dr Helen Stanley, Institute of Zoology,
The Zoological Society of London.

Amplification and sequencing of opsin gene fragments

The polymerase chain reaction (PCR) was used to
amplify three regions of the MW and LW opsin genes,
from base 479 to base 596 of exon 3 (using primer pair
5-ATGACGGGTCTCTGGTCCCTG-3" and 5CTCC-
AACCAAAGATGGGCGG-3), from base 650 to base
761 of exon 4 (using primer pair 5-CACGGCCT-
GAAGACTTCATGC-3" and 5SCGCTCGGATGGC-
CAGCCACAC-3') and from base 830 to base 983 of
exon 5 (using primer pair 5-GAATTCCACCCA-
GAAGGCAGAG-3 and ¥-GTCGACGGGGTTGTA-
GATAGTGGC-3).

Each reaction contained approx. 200 ng of template
DNA, 200ng of each primer pair, 0.2 mM each of
dATP, dCTP, dGTP and dTTP, 1 unit of Tag poly-
merase and reaction buffer in a final volume of 50 ul.
Either 30 or 35 cycles were used with an annealing
temperature of 58°C, elongation temperature of 72°C,
and denaturing temperature of 94°C. The products of
the reaction were visnalized by electrophoresis in a

FIGURE 1. A two-dimensional model of the MW/LW visual pigment.
The solid circles denote regions of the molecule that were sequenced
in the present study.
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FIGURE 2(B)

FIGURE 2. Sequence of opsin genes from six species of Old World primates. Nucleotide (A) and deduced amino acid sequence
{B). The human sequences are from Nathans ez al. (1986a). Exons 4 and 5 of the Cercopithecoid monkeys were originally
reported by Ibbotson et al. (1992).
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1.5% low-melting-point agarose gel using a 0.09 M
Tris-borate, 0.002 M EDTA buffer pH 8.0.

Amplified fragments were TA cloned (Invitrogen) into
either the pCR100 or pCRII plasmids and sequenced by
the dideoxy method using T7 polymerase and *S-
labelled dATP. The products of the sequencing reaction
were loaded on to a 6.0% polyacrylamide gel, separated
at 1500V for about 3hr, and autoradiographed
overnight.

All clones were sequenced in both directions and in
order to allow for Taq polymerase incorporation errors,
the sequence was confirmed by cloning from at least two
separate PCRs.

Sequence analysis

Phylogenetic trees were generated by the neighbour-
joining method of Saitou and Nei (1987) using a com-
puter program kindly supplied by Dr M. Nei of the
Center for Demographic and Population Genetics, The
University of Texas Health Center at Houston, Tex.
The number of nucleotide substitutions for each pair of
genes (n) was determined and the total number of
nucleotide substitutions per site (d) was corrected for
multiple substitutions by the method of Jukes and
Cantor (1969), where the corrected value of d = —(3)In

[1—@nl.

RESULTS AND DISCUSSION

The regions of exons 3, 4 and 5 that were sequenced
code respectively for about half of TM3 and most of
TM4, most of TM3S, and all of TM6 and half of TM7,
as shown in Fig. 1. The nucleotide and deduced amino
acid sequences are shown in Fig. 2, together with the
corresponding regions of the human genes (Nathans
et al., 1986a).

Spectral tuning sequence variation of the MW and LW
visual pigments

The sequences are described as MW or LW on the
basis of homology with the corresponding human se-
quences as originally reported by Nathans ez al. (1986a).
A complication with this assignment is that the human
gene is known to be highly polymorphic for exon 3
(Nathans et al., 1986a) and for codon 180 in particular,
such that two different MW and two different LW
pigments are found in the human population (Winder-
ickx et al., 1992; Neitz, Neitz & Jacobs, 1993). The
association of a particular exon 3 with either a MW or
LW exon 4 was not established in this study so the
classification of exon 3 sequences as either MW or LW
is based solely on homology with the original sequences
reported by Nathans er al. (1986a). What is clear how-
ever is that the two types of exon 3, which code for either
serine or alanine at position 180, are present throughout
the Old World primates and are not just a feature of the
human visual pigment genes.

Some substitutions are restricted to either the
Cercopithecoid or the Hominoid lineages (Fig. 2).
Serine-233, valine-274 and phenylalanine-309 are found
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only in the Hominoid MW gene, whereas methionine-
271 is present only in the LW gene of the Cercopithe-
coids. Of these sites, only 233 has been implicated in
spectral tuning (Williams et al., 1992); the replacement
of threonine by serine at this site in Hominoids is
considered to be a conservative change (Lehninger,
1982) and recent work by Merbs and Nathans (1993)
indicates that substitution at this site produces less than
a 1 nm spectral shift. The Old World species exhibit no
variation in the remaining three amino acids (specified
by codons 180, 277 and 285) thought to be critical for
spectral tuning (Neitz et al., 1991; Williams et al., 1992;
Merbs & Nathans, 1992). The 4,,, of the MW (533 nm)
and LW (563 nm) pigments of the three species of
Cercopithecoid monkeys (Bowmaker, Dartnall & Lyth-
goe, 1980; Bowmaker et al., 1991) are known to be very
similar to those of man (Bowmaker & Dartnall, 1980)
and, given the conserved amino acids at positions 180,
277 and 285 in the Great Apes, we would predict that the
MW and LW pigments of gorilla and chimpanzee would
have similar spectral characteristics to these Old World
monkeys and to man. It would appear unlikely that any
change in the spectral characteristics of the MW and LW
pigments has arisen from the folivorous life style of the
gorilla.

Although nothing is known behaviourally about the
colour vision of gorillas, our results for the chimpanzee
are concordant with the carefully conducted experiments
of Grether (1940a, b, c, 1941), who found that chim-
panzees behaviourally resembled human subjects in their
Rayleigh matches, in their spectral limits, in their wave-
length discrimination and in their saturation discrimi-
nation. The main differences that Grether observed
between human and chimpanzee subjects were small:
relative to human subjects tested in the same apparatus,
chimpanzees had somewhat elevated hue-discrimination
thresholds at long wavelengths, and there was a shift
from 575 to 570 nm in the least saturated wavelength of
the spectrum.

Sequence polymorphism in Old World primates

A number of polymorphisms in human MW and LW
opsin gene sequences have been reported (Nathans ez al.,
1986a; Winderickx er al., 1993), and we have found a
similar pattern of polymorphisms in non-human pri-
mates. The haplotypes of the polymorphic exons are
shown in Table 1. The polymorphisms in the talapoin
monkey and macaque are restricted to exon 3, whereas
the chimpanzee and gorilla are polymorphic for both
exons 3 and 4, although for both species, the polymor-
phism in exon 4 is limited to a single site. No polymor-
phic variation was found in exon 5 of any species
examined. This bunching of polymorphic sites in exon 3
(Fig. 3) is also seen in humans (Nathans et al., 1986a;
Winderickx et al., 1993), with eight sites at positions 494,
498, 500, 506, 552, 554, 562 and 573 common to humans
and Old World primates. Since the alternative nucleotide
present is in all cases identical to that present in the other
type of opsin gene, the production of these polymor-
phisms by inter-genic recombination would appear to be
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CONE OPSIN GENES IN HOMINIDEA

Human
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Other Hominoids: Gorilla and Chimpenzee
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Carcopithecold monkeys: Telapoin and Macaque

Exon 3

Exon 4

£xon §

FIGURE 3. Position of polymorphic sites in the MW and LW genes of Old World primates. The human polymorphic sites
are taken from previously published data (Nathans et al., 1986a; Winderickx ef al., 1993).

the most likely mechanism. Such exchanges must occur
therefore much more frequently in exon 3 than in either
exon 4 or 5, and since only in a few cases are the
positions of these polymorphic sites the same in the
different species, the production of such exchanges must
be an ongoing process. Winderickx et al. (1993) have
identified a sequence (from 497 to 504) that resembles
the hypervariable minisatellite sequence. This sequence
has been shown to promote recombination (Wahls,
Wallace & Moore, 1990) and has been found at certain
chromosomal breakpoints (Kenter & Birshtein, 1981;
Krowczynska, Rudders & Krontix, 1990). This region is
polymorphic at site 498 but is otherwise conserved
across the five species of Old World monkeys examined
here. The high rate of intergenic exchanges seen in this
region may be the consequence therefore of the presence
of this sequence (Winderickx er al., 1993).

Multiple opsin genes

For the reasons discussed above, either of the exon 3
haplotypes identified as LW in the male chimpanzee

could be part of a MW gene. These results are consistent
therefore with the original suggestion (Nathans et al.,
1986a) that only the MW gene can be present in multiple
copies. The sex of the animals studied is critical to the
understanding of these multiple sequences. In the case of
a female, the simplest explanation for the presence of
more than two sequences is that there is a different
version of the MW or the LW gene on her two X
chromosomes; this would account then for the multiple
MW exon 3 and LW exon 4 sequences found in the
gorilla. In males however, the multiple sequences ident-
ify the presence of more than two opsin genes on a single
X chromsome. The multiple exon 3 sequences that were
found in the male chimpanzee, the male talapoin
monkey and the male macaque indicate therefore that
these animals carry three, four and four opsin genes
respectively on the X chromosome.

These observations are consistent with the previous
identification of muitiple opsin genes in humans
(Nathans er al., 1986a; Drummond-Borg et al., 1989),
and in talapoin monkeys (Ibbotson et al., 1992). In both

TABLE 2. Average number of substitutions per site

CMW GMWDMW TMW MMW HLW CLW GLW DLW TLW MLW 3563 556 543 CH-1
H MW 0036 0028 0.048 0045 0039 0042 0042 0048 0066 0066 0.063 0081 0066 0066 0255
C MW 0.033 0.060 0.051 0057 0078 0078 0.066 0.084 0.084 0081 0063 0048 0054 0255
G MW 0.045 0.042 0.039 0054 0060 0048 0.072 0072 0069 0081 0066 0072 0251
D MW 0.008 0.028 0.063 0069 0063 0045 0.057 0.054 0.072 0063 0.069 0.255
T MW 0.025 0.060 0066 0.060 0048 0054 0.057 0.075 0.060 0.066 0.247
M MW 0.051 0.057 0051 0051 0057 0054 0054 0.051 0051 0239
HLW 0.011 0022 0042 0048 0045 0069 0054 0054 0.239
CLW 0011 0042 0048 0.045 0.069 0054 0054 0239
G LW 0.042 0.048 0.045 0057 0042 0048 0.239
DLW 0011 0.008 0.054 0.048 0054 0247
TLW 0.014 0066 0054 0060 0.255
M LW 0057 0.051 0057 0.239
563 0.014 0019 0.243
556 0.006 0.236
543 0.239

Values have been corrected for multiple substitutions by the method of Jukes and Cantor (1969).
H, human; C, chimpanzee; G, gorilla; D, diana monkey; T, talapoin monkey; M, macaque; 563, 556, 543, marmoset alleles; CH-1, chicken

iodopsin.

Where polymorphism is present, the sequence shown in Fig. 2 has been used in the analysis.
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FIGURE 4. Phylogenetic tree generated from sequence divergence of

the MW and LW opsin genes of Old World primates, the three allelic

variants of the marmoset gene, and the chicken iodopsin gene (not

shown). The tree was generated by the neighbour-joining method of

Saitou and Nei (1987). The average number of substitutions per site
for each branch of the tree is shown.

cases, it was thought that only MW sequences are
present in multiple copies, although an alternative hy-
pothesis that multiple LW genes can also be present has
now been proposed by Neitz and Neitz (1992). In either
case, the conclusion that multiple opsin genes are present
in Cercopithecoid and Hominoid primates is not
affected.

Origin of separate MW and LW genes in Old World
primates

The neighbour-joining method of Saitou and Nei
(1967) was used to generate the molecular phylogeny of
the MW and LW opsin genes. The equivalent gene se-
quences from the marmoset (Hunt, Williams, Bowmaker
& Mollon, 1993) were included in this analysis, and the
chicken iodopsin (Kuwata, Imamoto, Okano, Kokame,
Kojima, Matsumoto, Morodome, Fukada, Shichida,
Yasuda, Shimura & Yoshizawa, 1990) was used as an
outgroup. The average number of base pair substitutions
(silent and coding) in pairwise comparisons of the se-
quences were calculated and corrected for multiple sub-
stitutions (Table 2) by the method of Jukes and Cantor
(1969). To make maximal use of the sequence data, all
substitutions were included except those at codons 130,
277 and 285 that are known to affect spectral tuning

KANWALIJIT S. DULAI ¢ al.

(Neitz et al., 1991; Williams et af., 1992; Winderickx
et al., 1992).

As shown in Fig. 4, the separate MW and LW
sequences of Old World primates appear only after the
divergence of New and Old World primates. Each gene
then shows a separate lineage into the Cercoipithecoid
and Hominoid branches. This is consistent with the
notion that the duplication event that gave rise to these
separate genes occurred early in the evolution of Old
World primates, before the separation of the Cercopithe-
coid and Hominoid lineages.

The marmoset (New World) gene is represented by
three different allelic variants that specify pigments with
Amax Of 563, 556 and 543 nm respectively, and the phylo-
genetic analysis indicates that these variants arose some
time after the establishment of the New World lineage.
Since Old and New World primates depend on a com-
mon set of amino acid substitutions to achieve the
spectral shifts of the MW (543 nm pigment in marmoset)
and LW (563 nm pigment in marmoset) visual pigments
(Neitz et al., 1991; Ibbotson er al., 1992; Williams et al.,
1992; Winderickx er al., 1992), this would imply that the
mechanism of spectral tuning in Old and New World
primates arose separately in the two lineages; the use of
a common set of amino acid sites in the spectral tuning
process must be the result therefore of convergent evol-
ution. The phylogenetic analysis may underestimate
however the antiquity of the three marmoset sequences.
Since these are allelic variants of a single polymorphic
gene, the process of recombination will tend to limit
sequence divergence, whereas the separate MW and LW
genes of Old World primates will undergo exchange only
by the considerably less frequent process of gene conver-
sion (Balding, Nichois & Hunt, 1992; Winderickx er al.,
1993). It is possible therefore that the appearance of this
allelic variation pre-dates the separation of Old and New
World lineages. In this case, different spectral forms of
the opsin gene would have been present in the ancestral
primate, and an unequal exchange that placed two
different allelic forms of this gene on to a single X
chromosome would have resulted in the retention of the
same key amino acid substitutions in both lineages.
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