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We describe here a trichromatic type of squirrel monkey that resembles
Old World monkeys in having two well-separated photopigments in the
red-green part of the spectrum; the cones of this phenotype have peak
sensitivities close to 430, 536 and 564 nm. The existence of such animals
is predicted by a genetic model that postulates three alleles for a single
locus on the X-chromosome of the squirrel monkey. The three alleles
correspond to three different photopigments in the red—green spectral
range. A male monkey, or a homozygous female, will be dichromatic,
combining short-wave cones with just one of the cone types in the
red—green range. But a female monkey, if heterozygous at the locus,
draws any two of the three alleles from the set. X-chromosome inactiv-
ation ensures that the two alleles are expressed in different sub-
populations of retinal cone, giving the monkey the basis for trichromatic
colour vision. This model requires three trichromatic types of female
squirrel monkey. The photopigment complements of two types have
previously been reported and microspectrophotometric data are now
given for the third type. Behaviourally, this third type of trichromat
gives precise Rayleigh matches that are intermediate between those of
the other two types of trichromat.

The polymorphism of photopigments in the squirrel monkey may be
maintained by the heterozygous advantage enjoyed by the trichromatic
females. This would be an instructive instance of heterozygous advantage
because it is a case where X-chromosome inactivation plays a crucial role
in segregating the two different gene-products into different cells.

INTRODUCTION

The squirrel monkey, Saimiri sciureus, exhibits a remarkable intraspecific varia-
tion in its colour vision (Jacobs 1984); in earlier papers we have shown, by
microspectrophotometric measurements of isolated receptor cells, that the
behavioural variation in colour vision arises from a polymorphism of retinal
photopigments (Mollon et al. 1984 ; Bowmaker et al. 1985). In the samples hitherto
tested, all the male monkeys, and some of the females, were behaviourally
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dichromatic. These dichromatic animals proved to have only one photopigment
in the red—green spectral region, but three subtypes of dichromat have been
recorded: all are thought to have a short-wave cone pigment with its wavelength
of peak sensitivity (A,,,,) in the region of 430 nm, but this pigment is combined
with a second that can have its peak sensitivity near 536 nm in some animals, near
549 nm in others and near 564 nm in the third subtype. Two subtypes of
trichromatic monkey were found : one subtype combined the 549 nm photopigment
with the 536 nm pigment (see figure 2, upper panel), while the other combined the
549 nm pigment with the 564 nm pigment (see figure 2, middle panel).

In the present paper we report a third subtype of trichromatic monkey, a
phenotype missing from our earlier samples but demanded by the genetic model
that we provisionally proposed (Mollon et al. 1984; Jacobs & Neitz 1985). The
model incorporates the following assumptions:

(@) in the squirrel monkey there is only one genetic locus for a photopigment
in the red—green spectral range;

(b) there are at least three alleles that can occur at this locus, the three alleles
corresponding to three slightly different versions of the protein moiety (the ‘opsin’)
of the photopigment;

(c) the locus is on the X-chromosome;

(d) in those females that are heterozygous at this locus, only one of the two
pigments is manufactured in any given cone cell, owing to the phenomenon of
Lyonization (the inactivation of either the maternal or the paternal X-chromosome
that occurs in every somatic cell (Lyon 1972; Gartler & Riggs 1983)).

By this account, in the middle- to long-wave region of the spectrum, at least
three photopigments are potentially available to the squirrel monkey. Male
monkeys, we suppose, can draw only one pigment from the set, because they have
only one X-chromosome; so males are obliged to be dichromatic. Female monkeys
may draw either one or two pigments from the set; if they inherit the same alleles
on their maternal and paternal X-chromosomes then they will be dichromatic, but
if they inherit two different alleles then they will be trichromatic and will enjoy
good discrimination in the red—green spectral region. As it stands, our model
requires the existence of females that draw the 536 and 564 nm pigments from the
pool; but no animals of this type were found in our earlier microspectrophotometric
studies. Two examples of the missing phenotype are here described.

METHODS

The subjects were two adult female squirrel monkeys (Saimiri sciureus). The
behavioural and microspectrophotometric procedures, and the method of analy-
sing the microspectrophotometric records have been described previously (Jacobs
1984 ; Mollon et al. 1984 ; Bowmaker ef al. 1985) and only a summary is given here.

Rayleigh matches (Rayleigh 1881) were obtained for each animal by a forced-
choice method: the monkey was required to choose which one of three,
transilluminated panels was differently illuminated from the other two and, across
successive trials, the experimenter determined the proportion of red (625 nm) to
green (536 nm) light that the animal could not discriminate from a yellow light
(585 nm).
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Post mortem microspectrophotometric measurements were made on samples of
fresh retinal tissue from the same monkeys. The measuring beam of a modified
Liebman microspectrophotometer (Knowles & Dartnall 1977, pp. 562-566) was
passed transversely through the outer segments of individual photoreceptors while
a reference beam was passed through adjacent clear space in the preparation.

The A, for an individual receptor was estimated by fitting a template to the
right-hand limb of the absorbance spectrum. Except in the case of (very rare)
short-wave cones, microspectrophotometric records were excluded from further
analysis if they failed any one of the criteria specified by Bowmaker et al. (1985),
i.e. if the peak value of the transverse absorbance was less than 0.01, or if the
standard deviation of the 20 estimates of A, was greater than 10 nm, or if there
was a discrepancy of more than 10 nm between the estimate of A_ ., obtained by
fitting the template to the right-hand limb of the absorbance curve and an estimate
derived by fitting the template to both long- and short-wave regions.

REsvLTs

Figure 1 shows results for the Rayleigh match test. Unlike their dichromatic
conspecifics, S21F and S34 were behaviourally able to discriminate between yellow
and all but a small range of red—green mixtures. In comparison with normal human
trichromats (lowermost symbol), they required slightly more red light in the
red—green mixture to match the yellow light. However, the matches of these
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Ficure 1. Results of behavioural tests to establish Rayleigh matches for S21F and S34. The
matches are expressed as anomalous quotients, that is, as the ratio of green light to red
light in the match, divided by the corresponding mean ratio for normal human observers.
Results are also shown for two behaviourally ‘protanomalous’ animals (S14, S36) and two
‘deuteranomalous’ animals (S11, S26). The horizontal bar indicates the total range of
matches by colour-normal observers in the same apparatus.

animals are intermediate between the matches of the two types of trichromatic
monkey included in our previous microspectrophotometric samples (Mollon et al.
1984 ; Bowmaker et al. 1985). It was on the basis of these matches that S21F and
S34 were selected for microspectrophotometric study.

In the case of S21F, 49 microspectrophotometric records met the criteria
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specified in methods (see above); in the case of S34, this number was 52. The
estimated A, ,, values for individual cells are plotted as histograms in the lower
two panels of figure 2. The single short-wave cone found in animal S34 had a A
of 430.6 nm. The mean A
499.1 nm for S34.

max

values for the rods were 498.2 nm for S21F and
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Ficure 2. Distribution of values of peak sensitivity (A,y) for individual cells from monkeys
S21F and S34 (lower panels). Shown for comparison in the upper panels are pooled results
for two ‘protanomalous’ animals (S14, S36) and for two ‘deuteranomalous’ animals (S11,
S26).

In the red—green region of the spectrum, the A, values for individual cells fall
into two well-separated groups. The means for the two groups of cells are 536.3
(3.9) nm and 565.3 (3.3) nm for S21F, and 537.0 (4.4) nm and 561.3 (3.7) nm for
S34, where the values shown in parentheses are standard deviations.

For comparison, the upper panels of figure 2 show data from two animals (S14,
S36) that we have earlier called ‘ protanomalous’ and from two animals (S11, S26)
that we have earlier called ‘deuteranomalous’. The data for these four animals are
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taken from the study of Bowmaker et al. (1985); the experimental procedures and
the criteria for inclusion of records were the same as those used in the present study.
It was shown in the earlier study that the data for S11, S14, S26 and S36 in the
red—green range could be described by a statistical model that assumed only three
underlying distributions, two of which were present in each type of monkey. The
fit of this model was as good as one in which a ‘double normal’ distribution was
fitted individually to the data for each animal.

Figure 2 suggests that S21F and S34 share a middle-wave cone pigment with
S14 and S36, and share a long-wave cone pigment with S11 and S26. The mean
values of A, for the middle- and long-wave cones of S21F correspond closely to
the values of 536.2 and 564.0 nm, which were derived from the ‘anomalous’
monkeys in the statistical model of Bowmaker et al. (1985). Similarly, the value
for the middle-wave cones of S34 is very close to that of the earlier model; the mean
Apax Of the long-wave cones of S34 is slightly shorter than that derived in the
model.
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Ficure 3. Mean absorbance spectra for middle-wave (solid squares) and long-wave (open
squares) receptors from monkeys S21F and S34. The solid lines represent the mean
absorbance spectra for the middle-wave receptors of ‘protanomalous’ animals and the
long-wave receptors of ‘deuteranomalous’ animals (see Bowmaker et al. 1985, figure 6).

In figure 3 the solid squares show the mean absorbance spectrum for the
middle-wave cones from the present animals, S21F and S34. The records from
individual cones were averaged before normalization. The open squares show the
mean absorbance spectrum for the long-wave cones. The solid lines superimposed
on these data are not derived from the present measurements but are taken from
our earlier study of ‘protanomalous’ and ‘deuteranomalous’ squirrel monkeys
(Bowmaker ef al. 1985, figure 6). They represent two of the three pigments that our
statistical model identified in the ‘anomalous’ phenotypes, the middle-wave curve
being derived from the ‘protanomalous’ animals and the long-wave curve from
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the ‘deuteranomalous’. The excellent fit of the solid lines to the new data supports
our conclusion that the present animals share a middle-wave pigment with the
‘protanomalous’ phenotype and a long-wave pigment with the ‘deuteranomalous’
phenotype.

Discussion

It has often been supposed that the apes and the Old World monkeys are the
only mammals to share with man a form of trichromatic vision in which there are
two well-separated photopigments in the red—green spectral region. The squirrel
monkeys described here are remarkable in that their long- and middle-wave
photopigments are almost identical to those found in macaques and baboons
(Marks et al. 1964; Bowmaker et al. 1978, 1980, 1983; Harosi 1982; MacNichol
et al. 1983) and are not dissimilar from those of man (Dartnall et al. 1983). These
‘macaque-like’ squirrel monkeys add to the three types of dichromatic squirrel
monkey and the two types of trichromat previously described.

The trichromacy found in some squirrel monkeys has a genetic basis distinct
from that of human trichromacy. The present evidence for a sixth Saimire
phenotype supports our one-locus model for the long- and middle-wave pigments
of squirrel monkeys. The model postulates three alleles at a single locus on the
X-chromosome. Each of the three alleles generates a slightly different version of
the opsin of the photopigment molecule. If a female monkey inherits different
alleles from her two parents, then she has the capacity to manufacture three
different cone pigments (one of them being the short-wave pigment common to
all members of the species). The process of X-chromosome inactivation ensures
that only one allele is expressed in any given cell and thus gives rise to three classes
of cone with distinct spectral sensitivities. The phenotypic evidence for this model
would have been incomplete without the evidence, reported here, for female
squirrel monkeys that combine the 536 and 564 nm types of photopigment.

The evolution of polymorphous colour vision

Polymorphism of cone pigments may be widespread in New World monkeys:
intraspecific variations have been found in two callitrichid species, although the
set of photopigments is different from that found in squirrel monkeys (Bowmaker
et al. 1984 ; Neitz et al. 1985). Do such polymorphisms survive because no especial
advantage attaches to any one of the alleles or are they maintained by selective
pressures ?

We have earlier suggested that the polymorphism of cone pigments in Saimir
may be maintained by heterozygous advantage (Mollon et al. 1984). To understand
how a stable polymorphism could arise, consider first an ancestral, dichromatic
population within which there is only one gene for a photopigment in the red—green
spectral region. Suppose now a mutant allele enters the gene pool. When it is
inherited by a female monkey, the rare allele will almost invariably be paired with
the common allele. Females that inherit the rare allele will thus be trichromatic,
and thereby will be the more able to detect fruit, cryptic insects, or conspecifics
against the dappled background of the forest; and they will be the more able to
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discriminate ripe fruit from unripe. And if these discriminative abilities do increase
the biological fitness of the heterozygous female, then the frequency of the new
gene will rise. But the more common the new allele becomes, the greater the
likelihood that a given female will be homozygous for the new allele — and thus
be dichromatic. So, other factors being equal, the frequency of the new allele should
never rise above 0.5. It is easy to generalize this argument to the case where a third
allele enters the population: the new equilibrium should occur when each of the
three alleles has a frequency of 0.33. At the level of the whole animal, heterozygous
advantage and frequency-dependent selection are alternative explanations of
polymorphisms (see, for example, Clarke 1979), but if we consider the individual
gene (Dawkins 1982), then a heterozygous advantage will usually imply a
frequency-dependent advantage: the rarer an allele the greater its advantage
because it is the more likely to be paired with a different allele in the female
monkey.

However, there are two noteworthy properties of the heterozygous advantage
that we are postulating. First, the different alleles do not have different roles, as
they do in the classical example of sickle-cell anaemia (Allison 1964). Rather, the
advantage lies simply in inheriting two alleles that are different. Second,
X-chromosome inactivation serves to segregate, in different cells, the products
of the two alleles. Herein may lie an unrecognized function of X-chromosome
inactivation. There may be other physiological systems where the heterozygous
female can take advantage of two different alleles only if their products are segre-
gated in different cells. This might be the case, for example, if the alleles specified
membrane receptor molecules.

Evolution of human trichromacy

We have suggested how a polymorphism of cone pigments might arise in an
essentially dichromatic population. Such a polymorphism might in turn have been
an intermediate stage in the evolution of human trichromacy. As a result of
unequal crossing over, the polymorphic locus could have been duplicated, so that
alleles for the middle- and long-wave pigments were both established on a single
X-chromosome. A recent duplication of this kind is strongly suggested by the
proximity and the extreme similarity of the human genes for the middle- and
long-wave pigments (Nathans et al. 19864a,b); these two genes lie close together on
the distal portion of the ¢ arm of the X-chromosome and exhibit a 96 % mutual
identity. But such a duplication will not automatically allow the whole species to
become trichromatic. There must be also a mechanism for segregating the gene
products into different cone cells. X-chromosome inactivation provides the
heterozygous squirrel monkey with a mechanism of segregation; she loses this
mechanism if, by duplication, the same two genes become established on each
X-chromosome.
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